|
Light scattering by particles is the process by which small particles such as ice crystals, dust, planetary dust, and blood cells cause observable phenomena such as rainbows, the color of the sky, and halos. Maxwell's equations are the basis of theoretical and computational methods describing light scattering but since exact solutions to Maxwell's equations are only known for selected geometries (such as spherical particle) light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation scattering and absorption by particles. In case of geometries for which analytical solutions are known (such as spheres, cluster of spheres, infinite cylinders), the solutions are typically calculated in terms of infinite series. In case of more complex geometries and for inhomogeneous particles the original Maxwell's equations are discretized and solved. Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). Relative size of a scattering particle is defined by size parameter which is the ratio of its characteristic dimension and wavelength : ==Exact Computational methods== 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Light scattering by particles」の詳細全文を読む スポンサード リンク
|